Neuroprotective effects of preconditioning ischemia on ischemic brain injury through down-regulating activation of JNK1/2 via N-methyl-D-aspartate receptor-mediated Akt1 activation.
نویسندگان
چکیده
Our previous studies have demonstrated that the JNK signaling pathway plays an important role in ischemic brain injury and is mediated via glutamate receptor 6. Others studies have shown that N-methyl-d-aspartate (NMDA) receptor is involved in the neuroprotection of ischemic preconditioning. Here we examined whether ischemic preconditioning down-regulates activation of the mixed lineage kinase-JNK signaling pathway via NMDA receptor-mediated Akt1 activation. In our present results, ischemic preconditioning could not only inhibit activations of mixed lineage kinase 3, JNK1/2, and c-Jun but also enhanced activation of Akt1. In addition, both NMDA (an agonist of NMDA receptor) and preconditioning showed neuroprotective effects. In contrast, ketamine, an antagonist of NMDA receptor, prevented the above effects of preconditioning. Further studies indicated that LY294002, an inhibitor of phosphoinositide 3-kinase that is an upstream signaling protein of Akt1, could block neuroprotection of preconditioning, and KN62, an inhibitor of calmodulin-dependent protein kinase, also achieved the same effects as LY294002. Therefore, both phosphoinositide 3-kinase and calmodulin-dependent protein kinase are involved in the activation of Akt1 in ischemic tolerance. Taken together, our results indicate that preconditioning can inhibit activation of JNK signaling pathway via NMDA receptor-mediated Akt1 activation and induce neuroprotection in hippocampal CA1 region.
منابع مشابه
Protection of Hippocampal CA1 Neurons Against Ischemia/Reperfusion Injury by Exercise Preconditioning via Modulation of Bax/ Bcl-2 Ratio and Prevention of Caspase-3 Activation
Introduction: Ischemia leads to loss of neurons by apoptosis in specific brain regions, especially in the hippocampus. The purpose of this study was investigating the effects of exercise preconditioning on expression of Bax, Bcl-2, and caspase-3 proteins in hippocampal CA1 neurons after induction of cerebral ischemia. Methods: Male rats weighing 260-300 g were randomly allocated into three gro...
متن کاملNeuroprotective Effects of a Novel Single Compound 1-Methoxyoctadecan-1-ol Isolated from Uncaria sinensis in Primary Cortical Neurons and a Photothrombotic Ischemia Model
We identified a novel neuroprotective compound, 1-methoxyoctadecan-1-ol, from Uncaria sinensis (Oliv.) Havil and investigated its effects and mechanisms in primary cortical neurons and in a photothrombotic ischemic model. In primary rat cortical neurons against glutamate-induced neurotoxicity, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced neuronal death in a dose-d...
متن کاملThe Role of Peroxisome Proliferator Activator Receptor Alpha in Cerebral Ischemia-Reperfusion Injury; a Review Study
Peroxisome proliferator-activated receptor alpha (PPAR-α), which belongs to the nuclear receptor family of ligand-activated transcription factors, was first described as gene regulators for metabolic pathways including lipid metabolism, insulin sensitivity, and glucose homeostasis. Were raised. This nuclear receptor is widely expressed in various tissues, providing a wide range of effects to st...
متن کاملCaveolin-1 expression is essential for N-methyl-D-aspartate receptor-mediated Src and extracellular signal-regulated kinase 1/2 activation and protection of primary neurons from ischemic cell death.
N-Methyl-D-aspartate (NMDA) receptor (NMDAR) activation and downstream signaling are important for neuronal function. Activation of prosurvival Src family kinases and extracellular signal-regulated kinase (ERK) 1/2 is initiated by NMDAR activation, but the cellular organization of these kinases in relation to NMDARs is not entirely clear. We hypothesized that caveolin-1 scaffolds and coordinate...
متن کاملGlycine exerts dual roles in ischemic injury through distinct mechanisms.
BACKGROUND AND PURPOSE We characterized the differential effects of glycine at different levels in the induction of postischemic long-term potentiation, as well as in the neuronal damage induced by focal ischemia. METHODS Whole-cell patch clamp recordings were obtained from rat hippocampal slice preparations. In vitro ischemia and postischemic long-term potentiation were induced by oxygen and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 23 شماره
صفحات -
تاریخ انتشار 2005